Skip to main content
MetabERN - Education

Share information and documentation with actors involved in the field of hereditary metabolic disorders

Home > Education > Books & Publications > Publications > Two Uneventful Pregnancies in a Woman with Glutaric Aciduria Type (...)

Two Uneventful Pregnancies in a Woman with Glutaric Aciduria Type 1.

Stepien KM et al. JIMD Rep. 2018;41:29-36.


Abstract

Glutaric aciduria type 1 (GA1) is an autosomal recessive rare disorder caused by mutations in the GCDH gene resulting in deficiency of glutaryl-CoA dehydrogenase, leading to accumulation of the amino acids lysine, hydroxylysine and tryptophan and other metabolites. The phenotypic spectrum of disease is broad. Stress caused by infection and fever and possibly pregnancy may lead to worsening of the signs and symptoms, often with uncertain recovery.We describe a case of a female patient with GA1 who had two clinically uneventful pregnancies.At the age of 11 she was diagnosed with GA1 by family screening. The cultured skin fibroblast showed reduced glutaryl-CoA dehydrogenase activity (0.16 mg protein per min).The initial diagnostic urine glutaric acid level for this patient was 1,784 ╬╝mol/mmol creatinine. Mutation analysis showed compound heterozygosity for the p.(Gly185Arg), c.553G>A in exon 7 and p.(Arg402Trp), c.1204C.T in exon 11 mutations of the GCDH.Her pregnancy at the age of 23 was complicated by pre-eclampsia and required treatment with beta-blockers. Four years later the second pregnancy was uncomplicated. The management plan during the caesarean section included intravenous dextrose and lipid infusions. The patient rapidly recovered from both surgeries.Both babies have had normal development to date. On newborn screening, plasma acylcarnitine showed a transient increase in glutarylcarnitine, and the urine organic acid analysis showed a trace of 3-hydroxyglutarylcarnitine, likely to be of maternal transfer.The multidisciplinary team, consisting of metabolic, dietetic and obstetric care providers, have responsibility to ensure the risk of acute decompensation in pregnant GA1 women is minimal.

Full text link